If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+48t+32=0
a = -16; b = 48; c = +32;
Δ = b2-4ac
Δ = 482-4·(-16)·32
Δ = 4352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4352}=\sqrt{256*17}=\sqrt{256}*\sqrt{17}=16\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-16\sqrt{17}}{2*-16}=\frac{-48-16\sqrt{17}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+16\sqrt{17}}{2*-16}=\frac{-48+16\sqrt{17}}{-32} $
| 3+1x-3=5x-4-5x | | 7x-12=2x= | | 9p+16-p=8p-4+12 | | (3x+8)+(2x-33)=180 | | -6x=8x-36 | | 5x^2+10x=-1 | | -6(x-2)=-8x-16 | | 3(30+8)=2y-6 | | -6x=8x | | x+3.6=7.11 | | x^-4/5+x^-2/5-2=0 | | u-5.95=6.18 | | 4r+8r=12+36 | | x^-0.8+x^-0.4-2=0 | | 18n=-8n-(10n+3) | | x-9.2=7.8 | | 4x+17=11x-31 | | X●1=x | | (-7)(y)=-168 | | 0.5x+7=-1.5x | | x/6=x/9+8 | | X•1=x | | 2-3(4x+3)=16x+7 | | 4x^2-36=64 | | 2=6x=1-x | | 14m-4=4m | | 5(x-4)+3=13 | | 3^2-2(12-9)^2=63x | | 4/3x-3/8x=-46 | | 29+7d=15+15 | | 1=1x-6 | | 4y-80=200 |